منابع مشابه
Site-specific labeling of supercoiled DNA
Visualization of site-specific labels in long linear or circular DNA allows unambiguous identification of various local DNA structures. Here we describe a novel and efficient approach to site-specific DNA labeling. The restriction enzyme SfiI binds to DNA but leaves it intact in the presence of calcium and therefore may serve as a protein label of 13 bp recognition sites. Since SfiI requires si...
متن کاملSite-specific cleavage of supercoiled DNA by ascorbate/Cu(II).
We have investigated ascorbate/Cu(II) cleavage of double-stranded DNA in the presence and absence of DNA negative torsion. We found that ascorbate/Cu(II) cleavage shows a site-specificity that is dependent on negative torsion and is influenced by the nature of the salt, ionic strength, and pH. This provides strong evidence for involvement of local DNA conformation in ascorbate/Cu(II) specific c...
متن کاملDynamics of site juxtaposition in supercoiled DNA.
Juxtaposition kinetics between specific sites in supercoiled DNA is investigated at close to physiological ionic conditions by Brownian dynamics simulations. At such conditions, supercoiled DNA is interwound, and the probability of spatial site juxtaposition is much higher than in relaxed DNA. We find, however, that supercoiling does not correspondingly increase the rate of juxtaposition at the...
متن کاملStoichiometric incorporation of base substitutions at specific sites in supercoiled DNA and supercoiled recombination intermediates
Supercoiled DNA is the relevant substrate for a large number of DNA transactions and has additionally been found to be a favorable form for delivering DNA and protein-DNA complexes to cells. We report here a facile method for stoichiometrically incorporating several different modifications at multiple, specific, and widely spaced sites in supercoiled DNA. The method is based upon generating an ...
متن کاملBehavior of supercoiled DNA.
We study DNA supercoiling in a quantitative fashion by micromanipulating single linear DNA molecules with a magnetic field gradient. By anchoring one end of the DNA to multiple sites on a magnetic bead and the other end to multiple sites on a glass surface, we were able to exert torsional control on the DNA. A rotating magnetic field was used to induce rotation of the magnetic bead, and reversi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2006
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gkl642